
Journal of Algebra, Number Theory: Advances and Applications  
Volume 8, Number 1-2, 2012, Pages 41-55 

2010 Mathematics Subject Classification: Primary 11N13, 11N05; Secondary 11N37.
 Keywords and phrases: prime counting, Chebyshev functions, generalized Riemann 

hypothesis. 

Received August 14, 2012 

 2012 Scientific Advances Publishers 

CHEBYSHEV’S BIAS AND GENERALIZED  
RIEMANN HYPOTHESIS  

ADEL ALAHMADI1, MICHEL PLANAT2 
and PATRICK SOLÉ3 

1MECAA 
King Abdulaziz University  
Jeddah 
Saudi Arabia 

2Institut FEMTO-ST 
CNRS, 32 Avenue de l’Observatoire 
F-25044 Besançon 
France 
e-mail: michel.planat@femto_st.fr 

3Telecom Paristech 
46 rue Barrault 
75634 Paris Cedex 13 
France 

Abstract 

The oscillations of the prime counting function ( )xπ  around the logarithmic 

integral ( )xli  are known to be controlled by the zeros of Riemann’s zeta function 

( ) .sζ  Similarly, the discrepancy ( ) ( )NqxRqx ,;,; π−π  between the number of 
primes modulo q in a quadratic residue class R and in a quadratic nonresidue 
class N-the so-called Chebyshev’s bias- is controlled by the zeros of a Dirichlet    
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L-function ( )qsL ,  with the modulus q. In this work, we introduce a new bias, 
called the regularized Chebyshev’s bias, whose non-negativity is expected to be 
equivalent to a Riemann hypothesis for ( )., qsL  In particular, under the generalized 
Riemann hypothesis, this new bias should be positive for all integers q.             
The results are motivated and illustrated by extensive numerical calculations. 

1. Introduction 

In the following, we denote by ( )xπ  the prime counting function and 

by ( )aqx ,;π  the number of primes not exceeding x and congruent to         

a mod q. The asymptotic law for the distribution of primes is the prime 

number theorem ( ) .log~ x
xxπ  Correspondingly, one gets [5, Equation 

(14), p. 125] 

( ) ( )
( ) ,~,; q
xaqx

φ
ππ   (1.1) 

that is, one expects the same number of primes in each residue class        
a mod q, if ( ) .1, =qa  Chebyshev’s bias is the observation that, contrarily 

to expectations, ( ) ( )RqxNqx ,;,; π>π  most of the times, when N is not 

a square modulo q, but R is. 

Let us start with the bias 

( ) ( ) ( ),1,4;3,4;:4, xxx π−π=δ   (1.2) 

found between the number of primes in the quadratic nonresidue class 
3=N  mod 4 and the number of primes in the quadratic residue class 

1=R  mod 4. The values ( ) ,1,4,10 ≥δ nn  form the increasing sequence 

{ }.,5960,551,446,218,147,25,10,7,2,1091295 …=A  

The bias is found to be negative in thin zones of size 

{ },,978889416,78623342,41346,35815,410,2 …  

spread over the location of primes of maximum negative bias [1] 

{ }.,32135669918,8330263456,937867951,58936612,681623,26861 …  
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It has been proved that there are infinitely many sign changes in the 
Chebyshev’s bias (1.2). This follows from the Littlewood’s oscillation 
theorem [6, 8] 

( ) .loglog:4, 3
21









Ω=δ ± xx

xx   (1.3) 

A useful measure of the Chebyshev’s bias is the logarithmic density               
[6, 7, 13] 

( ) ,1
log

1lim
,

axAd
xaAa

x ∑
≤∈

∞→
=   (1.4) 

for the positive +∆  and negative −∆  regions calculated as ( ) 9959.0=∆+d  

and ( ) .0041.0=∆−d  

In essence, Chebyshev’s bias ( )4,xδ  is similar to the bias 

( ) ( ) ( ).Li: xxx π−=δ   (1.5) 

It is known that ( ) 0>δ x  up to the (very large) Skewes’ number 
316

1 1040.1~ ×x  but, according to Littlewood’s theorem, there are also 
infinitely many sign changes of ( )xδ  [8]. 

The reason why the asymmetry in (1.5) is so much pronounced is 
encoded in the following approximation of the bias [3, 13]1: 

( )
( )

,
41

logsin
21log~

2 













γ+

α+γ
+δ γ

γ
∑ x

x
xx   (1.6) 

where ( )γ=α −
γ 2cot 1  and γ  is the imaginary part of the non-trivial zeros 

of the Riemann zeta function ( ).sζ  The smallest value of γ  is quite large, 
,134.14~1γ  and leads to a large asymmetry in (1.5). 

                                                      
1 The bias may also be approached in a different way by relating it to the second order 
Landau-Ramanujan constant [10]. 
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Under the assumption that the generalized Riemann hypothesis 
(GRH) holds that is, if the Dirichlet L-function with non-trivial real 
character 4κ  

( ) ( )
( )

,
12

1,
0

4 s

n

n n
sL

+

−
= ∑

≥

κ   (1.7) 

has all its non-trivial zeros located on the vertical axis ( ) ,2
1=sℜ  then 

the formula (1.6) also holds for the Chebyshev’s bias ( ).4,xδ  The lowest 
non-trivial zero of ( )4, κsL  is at the ordinate ,02.6~1γ  a much smaller 
value than the one corresponding to ( ),sζ  so that the bias is also much 
smaller. 

A second factor controls the aforementioned asymmetry of a               
L-function of real non-trivial character ,κ  it is the variance [9] 

( ) .
41
2

2
0 γ+

= ∑
>γ

κV   (1.8) 

For the function ( )sζ  and ( ),, 4κsL  one gets 045.0=V  and ,155.0=V  
respectively. 

Our main goal. In a groundbreaking paper, Robin reformulated the 
unconditional bias (1.5) as a conditional one involving the second 
Chebyshev function ( ) .log pxv xpk∑ ≤

=/  

The equality ( ) ( )[ ] ( ) 0li: >π−/=δ′ xxvx  is equivalent to RH.  (1.9) 

This statement is given as Corollary 1.2 in [11] and led the second and 
third author of the present work to derive a good prime counting function 

( ) ( ) [ ( ) ].li 1
3

1

n

n
xvnx /µ=π ∑

=

  (1.10) 

Here, we are interested in a similar method to regularize the 
Chebyshev’s bias in a conditional way similar to (1.9). In [12], Robin 
introduced the function 
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( ) ( ) ( )[ ] ( ) ( ),,;,;li,; aqxqaqxvqaqxB πφ−/φ=   (1.11) 

that generalizes (1.9) and applies it to the residue class a mod q, with 
( )aqxv ,;/  the generalized second Chebyshev’s function. Under GRH, he 

proved that [12, Lemma 2, p. 265] 

( ) ,,
log

,; 2 ∞→







Ω= ± x

x
xaqxB   (1.12) 

that is, 

The inequality ( ) 0,; >aqxB  is equivalent to GRH.  (1.13) 

For the Chebyshev’s bias, we now need a proposition taking into 
account two residue classes such that Na =  (a quadratic nonresidue) 
and Ra =  (a quadratic one). 

Proposition 1.1. Let ( )aqxB ,;  be the Robin B-function defined in (1.11), 

and R (resp., N ) be a quadratic residue modulo q (resp., a quadratic 
nonresidue), then the statement ( ) ( ) ( ) ,0,;,;:, >−=δ′ NqxBRqxBqx   

x∀  (i), is equivalent to GRH for the modulus q. 

The present paper deals about the numerical justification of 
Proposition 1.1 in Section 2 and its tentative proof in Section 3. The 
calculations are performed with the software Magma [4] available on a 
96MB segment of the cluster at the University of Franche-Comté. 

2. The Regularized Chebyshev’s Bias 

All over this section, we are interested in the prime champions of the 
Chebyshev’s bias ( )qx,δ  (as defined in (1.2) or (2.3), depending on the 

context). We separate the prime champions leading to a positive/negative 
bias. Thus, the n-th prime champion satisfies 

( )( ) .1,, ±==δ  nqxn   (2.1) 
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We also introduce a new measure of the overall bias ( ),qb  dedicated to 

our plots, as follows: 

( )
( )( ).,

,
∑ δ

=




n n
n

x
qxqb   (2.2) 

Indeed, smaller is the bias lower is the value of ( ).qb  Anticipating over 
the results presented below, Table 1 summarize the calculations. 

Table 1. The new bias (2.2) (column 2) and the standard logarithmic 
density (1.4) (column 3) 

Modulus q Bias ( )qb  Log density ( )+∆d  First zero 1γ  

4 0.7926 0.9959 [3] 14.134 

11 0.1841 0.9167 [3] 0.2029 

13 0.2803 0.9443 [3] 3.119 

163 0.0809 0.55 [9] 2.477 

Chebyshev’s bias for the modulus .4=q  As explained in the 
Introduction, our goal in this paper is to reexpress a standard 
Chebyshev’s bias ( )qx,δ  into a regularized one ( ),, qxδ′  that is always 
positive under the condition that GRH holds. Indeed, we do not discover 
any numerical violation of GRH and we always obtain a positive ( )., qxδ′  
The asymmetry of Chebyshev’s bias arises in the plot δ  vs ,δ′  where the 

fall of the normalized bias 
x
δ  is faster for negative values of δ  than for 

positive ones. Figure 1 clarifies this effect for the historic modulus .4=q  
We restricted our plot to the champions of the bias δ  and separated 
positive and negative champions. 



CHEBYSHEV’S BIAS AND GENERALIZED RIEMANN … 47

 

Figure 1. The normalized regularized bias ( ) xx 4,δ′  versus the 

Chebyshev’s bias ( )4,xδ  at the prime champions of ( )4,xδ  (when 
( ) 04, >δ x ) and at the prime champions of ( )4,xδ−  (when ( ) 04, <δ x ). 

The extremal prime champions in the plot are 359327=x  (with 
105=δ ) and 951867937=x  (with 48−=δ ). The curve is asymmetric 

around the vertical axis, a fact that reflects the asymmetry of the 
Chebyshev’s bias. As explained in the text, a violation of GRH would 
imply a negative value of the regularized bias ( ).4,xδ′  The small dot curve 

corresponds to the fit of ( ) xx 4,δ′  by xlog2  calculated in Section 3. 

Chebyshev’s bias for a prime modulus p. For a prime modulus p, we 
define the bias so as to obtain an averaging over all differences 
( ) ( ),,;,; RpxNpx π−π  whereas above N and R denote a quadratic 

nonresidue and a quadratic residue, respectively, 

( ) ( ),,;, apxp
apx

a
π




−=δ ∑   (2.3) 
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where 






p
a  is the Legendre symbol. Correspondingly, we define the 

regularized bias as 

( )
 

( ).,;2
1, apxBp

a
ppx

a





=δ′ ∑   (2.4) 

Proposition 2.1. Let p be a selected prime modulus and ( )px,δ′  as 

in (2.4), then the statement ( ) ,,0, xpx ∀>δ′  is equivalent to GRH for the 

modulus p. 

As mentioned in the Introduction, the Chebyshev’s bias is much 
influenced by the location of the first non-trivial zero of the function 
( ) qqsL κκ ,,  being the real non-principal character modulo q. This is 

especially true for ( )163, κsL  with its smaller non-trivial zero at 

2029.0~γ  [3]. The first negative values occur at { }.,15083,15077,15073 …  

Figure 2 represents the Chebyshev’s bias δ′  for the modulus 163=q  

versus the standard one δ  (thick dots). That asymmetry of the 
Chebyshev’s bias is revealed at small values of ,δ  where the fit of the 

regularized bias by the curve xlog2  is not good (thin dots). 
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Figure 2. The normalized regularized bias ( ) xx 163,δ′  versus the 

Chebyshev’s bias ( )163,xδ  at all the prime champions of ( )163,xδ  [from 

( ) ,74163, >δ x  the bias is ( ) 0163, <δ x  negative], superimposed to the 

curve at the prime champions of ( )163,xδ−  (when ( ) 0163, <δ x ). The 

extremal prime champions in the plot are 68491=x  (with 74=δ ) and 
174637=x  (with 86−=δ ). The asymmetry is still clearly visible in the 

range of small values of ,δ  but tends to disappear in the range of high 

values of .δ  The small dot curve corresponds to the fit of ( ) xx 163,δ′  

by xlog2  calculated in Section 3. 

For the modulus ,13=q  the imaginary part of the first zero is not 
especially small, ,119.3~1γ  but the variance (1.8) is quite high, 
( ) .396.0~13−κV  The first negative values of ( )13,xδ  at primes occur 

when { }.,10531,2089,2083 …  Figure 3 represents the Chebyshev’s bias 
δ′  for the modulus 13=q  versus the standard one δ  (thick dots) as 
compared to the fit by xlog2  (thin dots). 
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Figure 3. The normalized regularized bias ( ) xx 13,δ′  versus the 

Chebyshev’s bias ( )13,xδ  at the prime champions of ( )13,xδ  (when 

( ) 013, >δ x ), and the curve at the prime champions of ( )13,xδ−  (when 

( ) 013, <δ x ). The extremal prime champions in the plot are 263881=x  

(with 123=δ ) and 905761=x  (with 40−=δ ). The small dot curve 

corresponds to the fit of ( ) xx 13,δ′  by xlog2  calculated in Section 3. 

Finally, for the modulus ,11=q  the imaginary part of the first zero is 

quite small, ,209.0~1γ  and the variance is high, ( ) .507.0~11−κV  In 

such a case, as shown in Figure 4, the approximation of the regularized 
bias by xlog2  is good in the whole range of values of x. 
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Figure 4. The normalized regularized bias ( ) xx 11,δ′  versus the 
Chebyshev’s bias ( )11,xδ  at the prime champions of ( )11,xδ  (when 
( ) 011, >δ x ), and the curve at the prime champions of ( )11,xδ−  (when 
( ) 011, <δ x ). The extremal prime champions in the plot are 638567=x  

(with 158=δ ) and 1867321=x  (with 32−=δ ). The small dot curve 

corresponds to the (very good) fit of ( ) xx 11,δ′  by xlog2  calculated 
in Section 3. 

3. Tentative Proof of Proposition 1.1 

For approaching the Proposition 1.1, we reformulate it in a simpler 
way as 

Proposition 3.1. One introduces the regularized counting function 
( ) ( ) ( ) .log,;,;:,; xlqxvlqxlqx /−π=π′  The statement ( ) >π′ Nqx ,;  

( ) xRqx ∀π′ ,,;  (ii), is equivalent to GRH for the modulus q. 
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Tentative Proof 3.2. First observe that Proposition 1.1 follows from 
Proposition 3.1. This is straightforward because according to [12, p. 260], 
the prime number theorem for arithmetic progressions leads to the 
approximation 

( ) ( )[ ] ( ) ( ) ( ) .log
,;li~,;li x

xlqxvqxlqxvq −/φ
+/φ   (3.1) 

As a result, 

( ) ( ) ( )NqxBRqxBqx ,;,;, −=δ′  

( ) ( )[ ] ( ) ( )[ ] ( ) ( )qxqNqxvqRqxvq ,,;li,;li δφ+/φ−/φ=  

( ) ( ) ( )[ ].,;,;~ RqxNqxq π′−π′φ  

The asymptotic equivalence in (3.1) holds up to the error term [12, p. 260] 

( ( ) ),log xx
xRO  with 

( ) ( ) ,0,,logmin log2 >= −θ axexxxR xaq  

 ( ) ( )( ).,ofzeroa,supmax mod κℜκ sLqq ρρ=θ  

Let us now look at the statement GRH ⇒  (i). Following [13, p. 178-179], 
one has 

( ) ( ) ( ) ( ),,1,;
mod

κκ
κ

xvaqaqxv
q

/φ
=/ ∑  

and under GRH, 

( ) ( )
( )

( )
( ) ( ) ( ) ( ) ( ),

log
,log

1
log

,,; 2
0

x
xOxvaxqx

x
q

aqc
q
xaqx +/φ

+
φ

−
φ
π=π ∑

≠

κκ
κκ

 

where 0κ  is the principal character modulo q and 

( ) { },mod:11, 2 qabqbaqc =≤≤+−= #  

for coprimes integers a and q. Note that for an odd prime ,pq =  one has 

( ) ., 




= p

aapc  
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Thus, under GRH, 

( ) ( ) ( ) ( ) ( )( )NqcRqcxxqRqxNqx ,,log
1,;,; −




φ

=π−π  

( ) ( )( ) ( )κκκ
κ

,mod xvRNq /−+ ∑   

.
log2 












+

x
xO  (3.2) 

The sum could be taken over all characters because ( ) ( ).00 RN κκ =  In 
addition, we have 

( ) ( ) ( ) [ ( ) ( )] ( ).,1,;,;
mod

κκκ
κ

xvRNqRqxvNqxv
q

/−
φ

=/−/ ∑   (3.3) 

Using (3.2) and (3.3), the regularized bias reads 

( ) ( ) ( )RqxNqxqx ,;,;~, π′−π′δ′  

[ ( ) ( )] .
log

,,log 2 







+−=

x
xONqcRqcx

x  (3.4) 

For the modulus ,4=q  we have ( ) 1211, =+−=qc  and ( ) 13, −=qc  so 

that ( ) .log
24, x

xx =δ′  The same result is obtained for a prime modulus 

pq =  since ( ) 1, −=Npc  and ( ) ( ) .111,, =




== ppcRpc  

For x large enough and under GRH for the modulus q (at least for 
4=q  and for a prime modulus pq = ), the regularized bias ( )qx,δ′  is 

positive and one has the inequality ( ) ( ).,;,; RqxNqx π′>π′  Besides, for 
(numerically reachable) small values of x, we found in Section 2 that 
( )qx,δ′  0>  (at least for a few selected values of q). This strengthens our 

conviction of the non-negativity of ( )qx,δ′  for all moduli. If GRH does not 
hold, then using [12, Lemma 2], one has 

( ) ( ) .anyfor,; qxaqxB θ<ξΩ= ξ
±  
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Applying this asymptotic result to the residue classes Ra =  and ,Na =  
there exist infinitely many values 1xx =  and 2xx =  satisfying 

( ) ( ) ,anyfor,;and,; 2211 qxNqxBxRqxB θ<ξ>−< ξξ  

so that one obtains 

( ) ( ) .0,;,; 2121 <−−<− ξξ xxNqxBRqxB   (3.5) 

Selecting a pair ( )21, xx  either 

( ) ( ),,;,; 21 RqxBRqxB >  

so that ( ) ( ) 0,;,; 22 <− NqxBRqxB  and (i) is violated at ,2x  or 

( ) ( ).,;,; 21 RqxBRqxB <   (3.6) 

In the last case, either ( ) ( ),,;,; 21 NqxBNqxB >  so that ( ) −RqxB ,;1  
( ) 0,;1 <NqxB  and the inequality (i) is violated at ,1x  or 

simultaneously, 

( ) ( ) ( ) ( ),,;,;and,;,; 2121 RqxBRqxBNqxBNqxB <<  

which implies (3.5) and the violation of (i) at .21 xxx ==  

To finalize the proof of 3.1, and simultaneously that of 1.1, one makes 
use of the asymptotic equivalence of (i) and (ii), that is, if GRH is true ⇒  
(ii) ⇒  (i), and if GRH is wrong, (i) may be violated and (ii) as well. 

Then, Proposition 2.1 also follows as a straigthforward consequence of 
Proposition 1.1. 

4. Summary 

We have found that the asymmetry in the prime counting function 
( )aqx ,;π  between the quadratic residues Ra =  and the quadratic 

nonresidues Na =  for the modulus q can be encoded in the function 
( )aqxB ,;  [defined in (1.11)] introduced by Robin the context of GRH 

[12], or into the regularized prime counting function ( )aqx ,;π′  as in 
Proposition 3.1. The bias in π′  reflects the bias in π  conditionaly under 
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GRH for the modulus q. Our conjecture has been initiated by detailed 
computer calculations presented in Section 2 and tentatively proved in 
Section 3. Further work could follow the work about the connection of ,π  
and thus of ,π′  to the sum of squares function ( )nr2  [10]. 
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